

Mathematische Grundlagen

BSc Psychologie | MSc Psychologie

MSc Klinische Psychologie und Psychotherapie

WiSe 2023/24

Prof. Dr. Dirk Ostwald

Definition (Mengen und Mengendefinition)

Nach Cantor (1895) ist eine Menge definiert als "eine Zusammenfassung M von bestimmten wohl-unterschiedenen Objekten m unsere Anschauung oder unseres Denken (welche die Elemente der Menge genannt werden) zu einem Ganzen". Wir schreiben

$$m \in M$$
 bzw. $m \notin M$ (1)

um auszudrücken, dass m ein Element bzw. kein Element von M ist. Zur Definition von Mengen gibt es mindestens folgende Möglichkeiten:

- (1) Auflisten der Elemente in geschweiften Klammern, z.B. $M:=\{1,2,3\}$
- (2) Angabe der Eigenschaften der Elemente, z.B. $M:=\{x\in\mathbb{N}|x<4\}$
- (3) Gleichsetzen mit einer anderen eindeutig definierten Menge, z.B. $M:=\mathbb{N}_3$

- $\{x \in \mathbb{N} | x < 4\}$ wird als " $x \in \mathbb{N}$, für die gilt, dass x < 4 ist" gelesen.
- Die Bedeutung von \mathbb{N} und \mathbb{N}_3 wird im Folgenden erläutert.
- Mengen sind *ungeordnet*, d.h. es gilt zum Beispiel $\{1,2,3\} = \{1,3,2\} = \{2,3,1\}$.

Definition (Teilmengen und Mengengleichheit)

• Eine Menge A heißt Teilmenge einer Menge B, wenn für jedes Element $a \in A$ gilt, dass auch $a \in B$. Ist A eine Teilmenge von B, so schreibt man

$$A \subseteq B$$
 (2)

und nennt A Untermenge von B und B Obermenge von A.

• Eine Menge A heißt echte Teilmenge einer Menge B, wenn für jedes Element $a \in A$ gilt, dass auch $a \in B$, es aber zumindest ein Element $b \in B$ gibt, für das gilt $b \notin A$. Ist A eine echte Teilmenge von B, so schreibt man

$$A \subset B$$
. (3)

• Zwei Mengen A und B heißen gleich, wenn für jedes Element $a \in A$ gilt, dass auch $a \in B$, und wenn für jedes Element $b \in B$ gilt, dass auch $b \in A$. Sind die Mengen A und B gleich, so schreibt man

$$A = B. (4)$$

Bemerkung

 $\bullet \ \ \text{Es seien} \ A:=\{1\}, \ B:=\{1,2\}, \ C:=\{1,2\}. \ \ \text{Dann gilt} \ \ A\subset B, B\subseteq C, C\subseteq B \ \ \text{und} \ \ B=C.$

Definition (Kardinalität)

Die Anzahl der Elemente einer Menge M heißt Kardinalität und wird mit |M| bezeichnet.

Beispiele

- Für $M := \{1, 2, 3\}$ gilt |M| = 3.
- Für $M:=\{a,b\}$ gilt |M|=2.
- Für $M:=\{x,y,z,\pi\}$ gilt |M|=4.

Definition (Leere Menge)

Eine Menge mit Kardinalität Null heißt *leere Menge* und wird mit ∅ bezeichnet.

• Für $M := \emptyset$ gilt |M| = 0.

Mengen

Definition (Potenzmenge)

Die Menge aller Teilmengen einer Menge M heißt $Potenzmenge\ von\ M.$ Die Potenzmenge einer Menge M wird mit $\mathcal{P}(M)$ bezeichnet.

- ullet Man beachte, dass die leere Untermenge von M und M selbst immer Elemente von $\mathcal{P}(M)$ sind.
- Ohne Beweis halten wir fest, dass gilt $|M| = n \Rightarrow |\mathcal{P}(M)| = 2^n$.

Wir betrachten vier Beispiele zum Begriff der Potenzmenge.

ullet $M_0:=\emptyset$ sei die leere Menge. Dann gilt

$$\mathcal{P}(M_0) = \emptyset. \tag{5}$$

• M_1 sei die einelementige Menge $M_1 := \{a\}$. Dann gilt

$$\mathcal{P}(M_1) = \{\emptyset, \{a\}\}. \tag{6}$$

 \bullet Es sei $M_2 := \{a,b\}.$ Dann hat M_2 sowohl ein- als auch zweielementige Teilmengen und es gilt

$$\mathcal{P}(M_2) = \{\emptyset, \{a\} \{b\}, \{a, b\}\}. \tag{7}$$

ullet Es sei $M_3:=\{a,b,c\}.$ Dann hat M ein-, zwei-, als auch dreielementige Teilmengen und es gilt

$$\mathcal{P}(M_3) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}. \tag{8}$$

Definition (Mengenoperationen)

M und N seien zwei Mengen.

• Die Vereinigung von M und N ist definiert als die Menge

$$M \cup N := \{x | x \in M \lor x \in N\},\tag{9}$$

ullet Der Durchschnitt von M und N ist definiert als die Menge

$$M \cap N := \{x | x \in M \land x \in N\}. \tag{10}$$

Gilt für zwei Mengen, dass $M \cap N = \emptyset$, dann heißen M und N disjunkt.

ullet Die Differenz von M und N ist definiert als die Menge

$$M \setminus N := \{x | x \in M \land x \notin N\}. \tag{11}$$

ullet Die symmetrische Differenz von M und N ist definiert als die Menge

$$M\Delta N := \{x | (x \in M \lor x \in N) \land x \notin M \cap N\}. \tag{12}$$

Beispiel

Für $M:=\{1,2,3\}$ und $N:=\{2,3,4,5\}$ gelten

- $\bullet \ \ M \cup N = \{1,2,3,4,5\}$
- $M \cap N = \{2, 3\}$
- $M \setminus N = \{1\}$
- $N \setminus M = \{4, 5\}$
- $M\Delta N = \{1, 4, 5\}$

Definition (Partition)

M sei eine Menge und $P:=\{N_i\}$ sei eine Menge von Mengen N_i mit i=1,...,n, so dass gilt

$$(M = \bigcup_{i=1}^{n} N_i) \land (N_i \cap N_i = \emptyset \text{ für } i = 1, ..., n, j = 1, ..., n, i \neq j).$$
 (13)

Dann heißt P eine Partition (oder Zerlegung) von M.

Bemerkungen

 ${}^{\bullet}\:$ Partitionen von $M:=\{1,2,3,4\}$ sind zum Beispiel

$$P_1 := \{\{1\}, \{2,3,4\}\}, P_2 := \{\{1,2\}, \{3,4\}\}, P_3 := \{\{1\}, \{2\}, \{3,4\}\}. \tag{14}$$

Definition (Zahlenmengen)

Es bezeichnen

- $\mathbb{N} := \{1, 2, 3, ...\}$ die natürlichen Zahlen,
- $\mathbb{N}_n := \{1, 2, 3, ..., n\}$ die natürlichen Zahlen der Ordnung n,
- $\mathbb{N}^0 := \mathbb{N} \cup \{0\}$ die natürlichen Zahlen und Null,
- $\mathbb{Z} := \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ die ganzen Zahlen,
- $\mathbb{Q} := \{ \frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0 \}$ die rationalen Zahlen,
- R die reellen Zahlen, und
- $\mathbb{C} := \{a + ib | a, b \in \mathbb{R}, i := \sqrt{-1}\}$ die komplexen Zahlen.

- \mathbb{R} umfasst die rationalen Zahlen und die irrationalen Zahlen $\mathbb{R} \setminus \mathbb{Q}$ wie z.B. e, π und $\sqrt{2}$.
- Es gilt $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Definition (Intervalle)

Zusammenhängende Teilmengen der reellen Zahlen heißen $\mathit{Intervalle}.$ Für $a,b\in\mathbb{R}$ unterscheidet man

· das abgeschlossene Intervall

$$[a,b] := \{x \in \mathbb{R} | a \le x \le b\},\tag{15}$$

das offene Interval

$$]a, b[:= \{x \in \mathbb{R} | a < x < b\},$$
 (16)

die halboffenen Intervalle

$$]a,b] := \{x \in \mathbb{R} | a < x \leq b\} \text{ und } [a,b[:= \{x \in \mathbb{R} | a \leq x < b\}. \tag{17}$$

- Positiv Unendlich (∞) und negativ Unendlich $(-\infty)$ sind keine Elemente von \mathbb{R} .
- $\bullet \ \ \text{Es gilt also immer} \]-\infty,b] \ \text{oder} \]-\infty,b[\ \text{bzw.} \]a,\infty[\ \text{oder} \ [a,\infty[, \ \text{sowie} \ \mathbb{R}=]-\infty,\infty[.$

Definition (Kartesische Produkte)

M und N seien zwei Mengen. Dann ist das K artesische P rodukt der M engen M und N die M enge aller geordneten Tupel (m,n) mit $m\in M$ und $n\in N$, formal

$$M \times N := \{(m, n) | m \in M, n \in N\}.$$
 (18)

Das Kartesische Produkt einer Menge M mit sich selbst wird bezeichnet mit

$$M^2 := M \times M. \tag{19}$$

Seien weiterhin $M_1,...,M_n$ Mengen. Dann ist das $\mathit{Kartesische\ Produkt\ der\ Mengen\ }M_1,...,M_n$ die Menge aller geordneten n-Tupel $(m_1,...,m_n)$ mit $m_i\in M_i$ für i=1,...,n, formal

$$\prod_{i=1}^{n} M_i := M_1 \times \dots \times M_n := \{(m_1, ..., m_n) | m_i \in M_i \text{ für } i = 1, ..., n\}. \tag{20}$$

Das n-fache Kartesische Produkt einer Menge M mit sich selbst wird bezeichnet mit

$$M^n := \prod_{i=1}^n M := \{(m_1, \dots, m_n) | m_i \in M\}.$$
 (21)

- · Mengen sind ungeordnet, Zahlentupel sind geordnet.
- Es gilt also zum Beispiel $\{1,2\} = \{2,1\}$, aber $(1,2) \neq (2,1)$.

Definition (Die Menge \mathbb{R}^n)

Das n-fache Kartesische Produkt der reellen Zahlen mit sich selbst wird bezeichnet mit

$$\mathbb{R}^n := \prod_{i=1}^n \mathbb{R} := \{x := (x_1, ,..., x_n) | x_i \in \mathbb{R} \}$$
 (22)

und " \mathbb{R} hoch n" gesprochen. Wir schreiben die Elemente von \mathbb{R}^n typischerweise als Spalten

$$x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \tag{23}$$

und nennen sie n-dimensionale Vektoren. Die Elemente von $\mathbb{R}^1=\mathbb{R}$ heißen nennt man Skalare.

• Ein Beispiel für
$$x \in \mathbb{R}^4$$
 ist $x = \begin{pmatrix} 0.16 \\ 1.76 \\ 0.23 \\ 7.10 \end{pmatrix}$

Selbstkontrollfragen

- 1. Geben Sie die Definition einer Menge nach Cantor (1895) wieder.
- 2. Nennen Sie drei Möglichkeiten zur Definition einer Menge.
- 3. Erläutern Sie die Ausdrücke $m \in M, m \notin N, M \subseteq N, M \subset N$ für zwei Mengen M und N.
- 4. Geben Sie die Definition der Kardinalität einer Menge wieder.
- 5. Geben Sie die Definition der Potenzmenge einer Menge wieder.
- 6. Es sei $M := \{1, 2\}$. Bestimmen Sie $\mathcal{P}(M)$.
- 7. Es seien $M:=\{1,2\}, N:=\{1,4,5\}$. Bestimmen Sie $M\cup N, M\cap N, M\setminus N, M\Delta N$.
- 8. Erläutern Sie die Symbole \mathbb{N} , \mathbb{N}_n , und \mathbb{N}^0 .
- 9. Erläutern Sie die Unterschiede zwischen $\mathbb N$ und $\mathbb Z$ und zwischen $\mathbb R$ und $\mathbb Q$.
- 10. Geben Sie die Definition abgeschlossener, offener, und halboffener Intervalle wieder.
- 11. Es seien M und N Mengen. Erläutern Sie die Notation $M \times N$.
- 12. Geben Sie die Definition von \mathbb{R}^n wieder.